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Abstract

Direct numerical simulation is utilized to generate temperature field statistics in particle-laden incom-

pressible homogeneous shear turbulent flows in the presence of mean temperature gradients. The particle

density is much larger than the fluid density and the particle volume fraction is small. The particle–particle

collisions are ignored, however, both one- and two-way couplings are considered. The effects of the mass

loading ratio, the particle time constant, the ratio of specific heats, and the orientation of the mean tem-

perature gradient on the fluid and particle temperature statistics are investigated. The results indicate that
the increase of the mass loading ratio or the particle time constant generally tends to decrease the mag-

nitudes of the temperature variance and the turbulent heat flux of both the carrier and the dispersed phases.

The increase of the ratio of specific heats increases the particle temperature variance but demonstrates an

opposite effect on the fluid. The magnitude of the turbulent heat flux of the fluid is not influenced by the

change of the ratio of specific heats whereas that of the particles increases with the increase of this ratio.

Further analysis of the results shows that the correlation of the temperature of the particles and the

temperature of the fluid at the location of the particles decreases with the increase of the ratio of specific

heats or the particle time constant and increases with the increase of the mass loading ratio. The mecha-
nisms responsible for these variations are discussed by examining the budgets of the temperature variance

and turbulent heat flux for both phases.
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1. Introduction

Particle-laden turbulent flows have been widely investigated by numerical and experimental
methods during the past few decades, however, the complexity of these flows has prevented the
formation of a complete mathematical description so far. This is due mainly to the fact that
turbulence itself is not fully understood and the presence of particles adds to the complexity of the
phenomena involved. Direct numerical simulation (DNS) has been implemented as a reliable tool
to accurately study particle-laden flows, however, the need to resolve all scales of turbulence
makes DNS applicable mainly in simplified configurations and at low Reynolds numbers. A re-
cent review of DNS studies of two-phase flows in various configurations can be found in
Mashayek and Pandya (in press).

Despite its known limitations, DNS has been instrumental in enhancing the physical under-
standing of many underlying phenomena which, perhaps, would otherwise remain as mystery.
Another important role of DNS has been the generation of reliable data that have extensively
been used by turbulence modelers for preliminary assessment of their mathematical models. This
has been a common practice in single-phase flows for more than a decade, and has more recently
been extended to two-phase flows (see e.g. Pandya and Mashayek (2003)). These two aspects of
DNS have been the primary motivation for undertaking the present study. In our previous works,
we have studied the case of isothermal flows and successfully implemented the DNS data for
validation of our models. In a recent work (Pandya and Mashayek, 2003), we have extended our
modeling efforts to non-isothermal flows. Some of the preliminary results from the present study
have already been used in Pandya and Mashayek (2003) for validation of the models derived
through a probability density function (pdf) modeling approach. In the present paper, we provide
the detail description of the DNS methodology and analyze the results for further physical un-
derstanding. Our analysis, however, is motivated by our greater need in the process of develop-
ment and assessment of two-phase turbulence models. We will mainly focus on the evolution of
various temperature statistics of both phases and their relevant contributing mechanisms. The
flow configuration is that of a homogeneous shear flow superimposed by uniform mean tem-
perature gradients in different directions. A major advantage of this configuration is that, due to
its homogeneity, the entire flow field can be used for statistical analysis, thus providing highly
accurate statistics.

The extent of previous DNS studies on non-isothermal two-phase flows is somewhat limited. A
few studies can be found in isotropic turbulence. Jaberi (1998) showed that in the non-isothermal
isotropic turbulence with stationary velocity and decaying temperature fields, the probability
density function of the fluid temperature deviates farther away from a Gaussian distribution with
the increase of the mass loading ratio. Jaberi and Mashayek (2000) simulated the isotropic tur-
bulence in which both velocity and temperature fields were statistically stationary. They found
that the variance of the fluid and particle temperature were increased as the mass loading ratio or
the Prandtl number was increased. The mechanism of heat transfer between the two phases in the
presence of a mean temperature gradient in the decaying isotropic turbulence was also investi-
gated (Sato et al., 1998). The results showed that the particle temperature and velocity are well
correlated in the direction of the mean temperature gradient.

Only a few studies have been performed on particle dispersion in turbulent homogeneous shear
flows by DNS. For isothermal flows, the most recent works were performed by Ahmed and
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Elghobashi (2000, 2001). The results indicated that particles modify the production rate of the
turbulence kinetic energy via modifying the vorticity dynamics in cases with two-way coupling. It
was also shown that for cases with one-way coupling, preferential accumulation of particles is
maximum when particle time constant equals the Kolmogorov time scale. Mashayek (1998)
considered both non-evaporating and evaporating droplets in compressible turbulent homoge-
neous shear flows. The results showed that evaporation increases both the turbulence kinetic
energy and the mean internal energy of fluid by mass transfer. It was also shown that for both
evaporating and non-evaporating droplets, the variances of the temperature fluctuations of both
phases become independent of the initial droplet temperature after an initial transient period.

As the above brief review indicates, none of the previous studies have considered a particle-
laden turbulent flow in the presence of both mean velocity and mean temperature gradients. This
case is studied in the present paper. In Section 2 the problem formulation and the computational
methodology are described. In Section 3 an overview of the simulations is provided. In Sections 4
and 5 the results of the simulations are presented and discussed, followed by a summary and some
concluding remarks in Section 6.
2. Formulation and methodology

Numerical simulations are implemented to investigate homogeneous turbulent shear flow of an
incompressible fluid (continuous phase) laden with solid particles (discrete phase). The continuous
phase is a Newtonian fluid, and its instantaneous velocity, pressure and temperature are denoted
by Ui, P and T , respectively. The Eulerian non-dimensional continuity, momentum and energy
equations for the continuous phase are, respectively,
oUj

oxj
¼ 0; ð1Þ

oUi

ot
þ o

oxj
ðUiUjÞ ¼ � oP

oxi
þ 1

Ref

o2Ui

oxjoxj
þSui; ð2Þ

oT
ot

þ o

oxj
ðUjT Þ ¼

1

Ref Pr
o2T
oxjoxj

þSe: ð3Þ
In these equations, all of the variables are normalized by reference length (Lf ), density (qf ), ve-
locity (Uf ), and temperature (Tf ) scales. The reference Reynolds and Prandtl numbers are defined
as Ref ¼ qfUf Lf=l and Pr ¼ Cpl=j, respectively, where l, j, and Cp are the viscosity, the thermal
conductivity, and the specific heat of the continuous phase, respectively. The length scale is
conveniently chosen such that the normalized volume of the simulation box is ð2pÞ3, and the fluid
density is used as the scale for density. The initial temperature of the fluid is the temperature scale,
and the velocity scale is determined from the specified value of the reference Reynolds number.
The effects of the particles on the carrier phase (i.e. the two-way coupling effects) are expressed
through the terms Sui and Se which, respectively, describe the momentum and energy exchanges
between the two phases. These terms and their formulation are described in Section 2.1.

The particles are assumed to be solid spheres with equal diameters smaller than the smallest
length scale of the turbulence and to exhibit an empirically corrected Stokesian drag force. The
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transversal motion is the only motion considered for the particles and their rotation is neglected.
The density of the particles is considered to be constant and much larger than that of the fluid so
that only the inertia and the drag force are significant to the particle dynamics. Gravity effects are
not considered due to limitations in the numerical scheme. The particles are assumed ‘‘lumped’’
and each particle is at a uniform temperature. In addition, both particle–particle interaction and
heat transfer due to radiation are neglected as a small volume fraction is assumed for particles.
Each particle is tracked individually in a Lagrangian frame, and its instantaneous position, ve-
locity, and temperature are denoted by Xi, Vi , and Tp, respectively. With this nomenclature, the
non-dimensional Lagrangian equations describing the particle dynamics and heat transfer are
(Crowe et al., 1977)
dXi

dt
¼ Vi; ð4Þ

dVi
dt

¼ f1
sp

ðU �
i � ViÞ; ð5Þ

dTp
dt

¼ f2
sp

ðT � � TpÞ; ð6Þ
where the superscript � indicates the value of a carrier-phase variable at the particle location. The
particle variables are normalized using the same reference scales used for the continuous phase
variables. The non-dimensional particle time constant is sp ¼ Refqpd

2
p=18, where dp and qp are the

particle diameter and density, respectively.
The function f1 ¼ 1þ 0:15Re0:687p in (5) represents an empirical correction to the Stokes drag

due to particle Reynolds numbers of order unity and larger (Wallis, 1969) and is valid for particle
Reynolds numbers Rep ¼ Refq�dpjU �

i � Vi j6 1000. The factor f2 ¼ Nu=3Pra represents a corre-
lation for the convective heat transfer coefficient based on an empirically corrected Nusselt
number, Nu ¼ 2þ 0:6Re0:5p Pr0:33 (Bird et al., 1960), where a is the ratio of the particle specific heat
and the fluid specific heat.
2.1. Formulation of shear flow with mean temperature gradient

In order to configure a homogeneous shear flow for DNS, a linear mean velocity profile is
applied to an initial zero-mean, random, solenoidal velocity field. Therefore, the continuous phase
instantaneous velocity is Ui ¼ Sx2di1 þ ui, in which ui is the continuous phase fluctuating velocity.
The dimensionless mean velocity gradient is defined as S ¼ ohU1i=ox2 ¼ constant, where h i in-
dicates the Eulerian ensemble average over the number of grid points. In this work, we also
consider a mean temperature that satisfies (Blaisdell et al., 1993)
ohT i
ot

þ Sx2M1 ¼ 0; ð7Þ
where Mi ¼ ohT i=oxi denotes the mean temperature gradient in the xi direction. The magnitude of
Mi must be uniform in space in order to maintain a homogeneous flow, and it satisfies



B. Shotorban et al. / International Journal of Multiphase Flow 29 (2003) 1333–1353 1337
oMi

ot
þ Sdi2M1 ¼ 0; ð8Þ
or,
Mi ¼ M0
i � Stdi2M0

1 ; ð9Þ
where M0
i is Mi at t ¼ 0. Eq. (9) states that for a mean temperature gradient initially aligned in

only x2 or x3 directions, the mean temperature gradient is steady. However, for a mean temper-
ature gradient initially aligned in only x1 direction, a mean temperature gradient also develops in
the x2 direction and is time dependent. This time dependency physically arises because the fluid at
large values of x2 moves more rapidly than the fluid at small values of x2, as a result of the shear
flow (Rogers et al., 1989).

The numerical method implemented to solve the governing equations for homogeneous shear
flow is the same as that of Blaisdell et al. (1993), and Rogallo (1981) and has been described in
Rogers et al. (1989) in detail. A computational (deforming) coordinate system, x0i, is related to the
fixed (nondeforming) system, xi, through
x0i ¼ Qijxj; Qij ¼ dij � Stdi1dj2: ð10Þ
After applying the transformation to (1)–(3), and dropping the superscript 0 on the coordinates for
simplicity, the governing equations in the transformed coordinates are
Qji
oui
oxj

¼ 0; ð11Þ

oui
ot

þ Qkj
o

oxk
ðuiujÞ ¼ �u2Sdi1 � Qki

oP
oxk

þ QkjQlj

Ref

o2ui
oxkoxl

þSui; ð12Þ

oh
ot

þ Qkj
o

oxk
ðujhÞ ¼ �uiMi þ

QkiQji

Ref Pr
o2h

oxkoxj
þSe; ð13Þ
where h ¼ T � hT i is the fluid fluctuating temperature.
By performing ensemble averaging on the particle instantaneous equations, it can be shown

that the discrete phase is homogeneous within the deforming domain used to simulate the con-
tinuous phase. Because external forces and heat sources are absent, following a procedure similar
to that in Barr�ee et al. (2001), it can be shown that the mean velocity and temperature of the
particles coincide with the corresponding quantities of the continuous phase, i.e. hhViii ¼ hUii and
hhTpii ¼ hT i. Here, hh ii denotes the Lagrangian ensemble average over the number of particles.
Also, the particles are at the same initial velocities and temperatures as are their surrounding fluid
elements. The particle position, fluctuating velocity and temperature in the transformed coordi-
nates read
dXi

dt
¼ Qikvk; ð14Þ

dvi
dt

¼ f1
sp

ðu�i � viÞ � v2Sdi1; ð15Þ
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dhp
dt

¼ f2
sp

ðh� � hpÞ � viMi: ð16Þ
The source/sink terms Sui and Se appearing in (12) and (13) represent the two-way coupling
effects. These Eulerian variables are calculated from the Lagrangian particle variables by volume
averaging the contributions from all individual particles residing within the cell volume
(dV ¼ ðdxÞ3, where dx is the node spacing) centered around each grid point. In the deforming
coordinates, these terms are expressed as
Sui ¼ � 1

dV

Xnp mpf1
sp

ðu�i
�

� viÞ
�
; ð17Þ

Se ¼ � 1

dV

Xnp mpf2a
sp

ðh�
�

� hpÞ
�
: ð18Þ
In these equations, np is the number of particles within the cell volume and those cells with np ¼ 0
are assigned a zero value for each variable. The source termSui given by (17) arises because of the
momentum transfer due to drag force on the particle, and the source term Se given by (18) arises
because of the heat transfer to/from the particle due to convection. In the derivation of (16) and
(18), the heat generated by the viscous dissipation of the turbulent motions as well as that due to
the particle drag are neglected.

2.2. Computational methodology and initializations

The computational methodology is the same as that employed in Mashayek and Taulbee (2002)
and will not be detailed here. All of the Eulerain fields are calculated using a pseudospectral
method and the Lagrangian particle equations are integrated in time using a second order ac-
curate Adams–Bashforth method. To evaluate the continuous-phase variables at the particle lo-
cation a fifth order accurate Lagrange polynomial interpolation scheme is employed. The velocity
and temperature fields are initialized as random Gaussian and isotropic fields in Fourier space.
The velocity field is also solenoidal. The initial spectrum, for both velocity and temperature, is
calculated from K4 exp½�2ðK=KsÞ2� where K is the wave number and Ks specifies the wave number
location for the peak of the energy spectrum and is chosen to be Ks ¼ 7. The particles are ran-
domly distributed in the flow at t ¼ 0, with the same velocity and temperature as those of their
surrounding fluid. We have considered the highest possible Reynolds number while maintaining
the resolution needed for the small scales. In all simulations, Ref ¼ 220, Pr ¼ 0:7, and S ¼ 2. The
initial values of some of the flow parameters are shown in Table 1, where Rek, k, urms, hrms, �, and �h
1

parameters at time t ¼ 0

63.2

0.2879

1.0

1.7321

0.8405

1.4579
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are, respectively, the Reynolds number based on the Taylor length scale, the Taylor length scale,
the root mean square of the (isotropic) velocity fluctuation, the root mean square of tempera-
ture fluctuation, the kinetic energy dissipation rate, and the temperature fluctuation dissipation
rate.
3. Overview of simulations

The number of parameters involved in the problem is too large to allow us to investigate the
effects of all of them in detail. Instead, we perform a case study to compare the effects of variation
of some of the parameters on the statistics of the flow and particles. The particle time constant
(sp), the mass loading ratio (Um), and the ratio of the particle and carrier phase specific heats (a)
are the parameters that are considered for investigation. Table 2 shows a listing of the cases
considered to study the effects of these parameters. Each of the cases shown in Table 2 are carried
out with three different initial mean temperature gradients in order to observe the effects of the
gradients applied in different directions. Various cases are performed in reference to a ‘‘base case’’
which is indicated with boldface in the table. Shown in Table 2 are also values of sp=sk (sk is the
Kolmogorov time scale) and dp=g (g is the Kolmogorov length scale) at times St ¼ 2 and 10. For
all of the cases, dp=g varies between 0.15 and 0.3, therefore, it is reasonable to assume that the flow
field around each particle is uniform. The values of sp=sk are useful in identifying the scales of the
flow which are more effectively interacting with the particles (Hinze, 1972). It should be em-
phasized that since the governing energy equation (3) is a linear equation of the dependent
variable T , the solution for any mean temperature gradient could be obtained by superposition of
the solutions for M0

1 , M
0
2 , and M0

3 if we consider zero initial fluctuating temperature field. As we
wish to investigate the effects of the direction of the mean temperature gradient, we simulate all
cases with the same initial velocity and non-zero temperature fields. The fluctuating temperatures
of continuous and discrete phases with a mean temperature gradient initially imposed in the n
direction (n ¼ 1; 2; 3) are denoted as hn and hpn, respectively. All of the simulations presented here
have been performed on 1283 collocation points on a CRAY-T90 with a time step size of
2.5 · 10�3 and continued till non-dimensional time St ¼ 12.
Table 2

Casesa considered for the study

Case reference sp Um a Coupling Np � 10�5 sp=skb dp=gb

Base case 0.3 0.25 1 2-way 9.80 3.02fi 1.94 0.233fi 0.187

1.5spb 0.45 0.25 1 2-way 5.32 4.53fi 2.69 0.286fi 0.220

2Umb 0.3 0.50 1 2-way 19.48 2.54fi 1.76 0.214fi 0.178

4ab 0.3 0.25 4 2-way 9.80 3.02fi 1.94 0.233fi 0.187

One-way 0.3 – 1 1-way 1.00 3.92fi 2.64 0.266fi 0.218

The base case is shown by boldface.
a Each case has been simulated for three different initial mean temperature gradients: (1) M0

1 ¼ 0:2, M0
2 ¼ 0, and

M0
3 ¼ 0; (2) M0

1 ¼ 0, M0
2 ¼ 2, and M0

3 ¼ 0; (3) M0
1 ¼ 0, M0

2 ¼ 0, and M0
3 ¼ 2.

b Values are given at St ¼ 2 and St ¼ 10.
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The particles are randomly distributed in the flow at t ¼ 0 with the same velocity and tem-
perature as those of their surrounding fluid. They are considered with either one- or two-way
coupling with the continuous phase. The condition of one- or two-way coupling is imposed from
t ¼ 0 for respective cases. The total number of particles (Np) tracked in each simulation is de-
termined from the given values of the particle time constant and the mass loading ratio. For the
one-way coupling case, the mass loading ratio is not a relevant parameter. For this case
the number of particles is large enough so that the statistics do not change with the increase of the
number of particles.

As has been the practice in our previous studies, before implementing the data generated by
simulations for detail statistical analysis, we have made certain that various fields are sufficiently
well resolved and that the assumptions invoked in the formulation of the problem are reasonably
satisfied. For example, the value of gKmax, where g is the Kolmogorov length scale and Kmax is the
highest wave number resolved in the simulations, was monitored throughout the simulations and
was kept sufficiently larger than the acceptable limit of unity.
4. Temperature field of the continuous phase

The temporal evolution of the temperature variance of the continuous phase, hh2ni, for the cases
with initial streamwise (n ¼ 1), cross-stream (n ¼ 2), and spanwise (n ¼ 3) mean temperature
gradients are shown in Fig. 1a–c, respectively. As shown in the figure, an initial decay in the
temperature variance is observed for all cases. After decaying to some minimum values, the
temperature variance starts to grow in the later times. The growth rate of the temperature vari-
ance observed in Fig. 1a is larger than that in the other two figures. This is due to the time de-
pendency of the mean temperature gradient for n ¼ 1, as shown in Eq. (9). The initial decay of the
temperature variance for all cases is due to the absence of the turbulent heat fluxes at t ¼ 0 as will
be discussed below. Another feature observed in Fig. 1 is that in spite of different directions of the
mean temperature gradient for cases in Fig. 1b and c, the initial decay for St < 2 is very similar.
This is indicative of an isotropic nature for the initial decay. An interesting feature in Fig. 1c is the
appearance of some oscillations for StP 7. These oscillations are related to the interactions be-
tween the pressure and temperature fields which will be further discussed later in this section.

The primary effect of the particles is to decrease the temperature variance of the continuous
phase comparing to the pure fluid in all times except for St > 7 of Fig. 1c. As indicated in Fig. 1,
the one-way coupling case has the largest temperature variance among all of the cases having the
same mean temperature gradients. The figure also shows that the temperature fluctuation intensity
of the continuous phase decreases with increasing the mass loading, as a result of an increase of
the particles effects on the fluid phase.

The effects of the change of the specific heats ratio and the particle time constant can also be
noticed in Fig. 1. The increase of this ratio decreases the temperature variance of the continuous
phase. As we explain later, this is due to the increase of the particle component of the temperature
variance dissipation. It is observed that the decrease of the temperature variance is less significant
in Fig. 1a as compared to Fig. 1b and c. The increase of the particle time constant also decreases
the temperature variance because of the modifications on the turbulence heat flux.



Fig. 1. Temperature variance of the fluid phase for cases with (a) initially streamwise, (b) cross-stream, and (c) spanwise

mean temperature gradients.
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In an attempt to explain the above observations pertaining to the evolution of the temperature
variance of the continuous phase, its transport equation for a homogeneous shear flow laden with
particles and in the presence of a mean temperature gradient is considered. This equation can be
derived from (13) by multiplying throughout by h and then ensemble averaging. The final form
can be written as
dhh2i
dt

¼ Ph � �h þ Qp; ð19Þ
where Ph ¼ �2hhuiiMi is the production by the heat flux along with the mean temperature gra-
dient,
�h ¼
2

Ref Pr
oh
oxj

oh
oxj

� �
ð20Þ
is the dissipation rate for hh2i or the molecular smearing of the temperature fluctuations, and
Qp ¼ �2
a

dV

Xnp f2mp

sp
ðh�

*
� hpÞh�

+
; ð21Þ
indicates the particle contribution. The production term Ph can be decomposed into two parts as
Psh and Pth, from steady and transient components of the mean temperature gradient, respectively,



Fig. 2. Budgets of temperature variance for the base case with (a) initially streamwise and (b) cross-stream mean

temperature gradients.
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Psh ¼ �2hhnuniM0
n ; Pth ¼ 2hh1u2iStM0

1 ; ð22Þ
where no summation is implied over the repeated Greek indices. It is noted that Pth for the cases
with cross-stream and spanwise mean temperature gradients is always zero.

The budget of the temperature variance for the base case with the initial streamwise and cross-
stream mean temperature gradients is shown in Fig. 2. In this figure,

P
RHS denotes the sum-

mation of all of the terms on the right-hand side of (19). The budget of the temperature variance
of the base case with the spanwise mean temperature gradient is similar to that for the base case
with the cross-stream mean temperature gradient and is not shown in this figure. Due to the
uncorrelated initial velocity and temperature fluctuations, which results in zero turbulent heat
flux, the production terms, Pth and Psh, are zero at t ¼ 0. In Fig. 2a, the production terms for
St < 4, where the corresponding temperature variance is minimum according to Fig. 1a, are in-
significant but in the later times Pth starts to grow fast and its difference from Psh becomes more
pronounced. This difference is due to the growth of the time dependent component of the mean
temperature gradient whereas the steady state component remains constant. This further explains
the larger growth rate observed in Fig. 1a for temperature variance at later times. Fig. 2 also
shows that �h and Qp both contribute to the dissipation of the temperature variance. Comparing
these two terms reveals that �h is larger than Qp.

Now we discuss the effects of various parameters on the terms on the right-hand side of (19). In
the presence of particles the production terms decrease, due to the decrease of the turbulent heat
flux as explained in the next paragraph. Our results indicated that the magnitude of �h decreases
with the increase of the mass loading ratio but the magnitude of Qp increases. Comparing �h to Qp

always shows that �h is more significant. On the other hand, the particles modify the fluid tem-
perature variance mostly via modifying the turbulent heat flux as its production term, except for
the case with a ¼ 4ab which is modified by the modification of dissipation terms. An inspection of
the energy spectra of the fluid temperature also verified that in this case modification is done
mostly on the small scales rather than the larger scales of turbulence.

The temporal variation of the non-vanishing components of the turbulent heat flux hhnuii are
shown in Fig. 3. In the same figure, the case with a ¼ 4ab gives results identical to the base case. As



Fig. 3. Turbulent heat flux components with (a), (b) initially streamwise (c), (d) cross-stream and (e) spanwise mean

temperature gradients.

B. Shotorban et al. / International Journal of Multiphase Flow 29 (2003) 1333–1353 1343
the streamwise and spanwise components of the mean velocity gradient are absent, hh1u3i, hh2u3i,
hh3u1i, and hh3u2i must vanish theoretically and our DNS data also confirms that these terms are
almost zero. The turbulent heat flux along with the mean temperature gradient constitutes the
production term for the temperature variance according to (22). Therefore, the reasons behind
many of the features observed in Fig. 1 may be found by examining Fig. 3. For example, the
separation of the case with /m ¼ 2/mb at St ’ 10 from the base case in Fig. 1a is due to the sudden
change in the slope of hh1u2i of the corresponding case at that time as shown in Fig. 3b. Since the
heat flux magnitude of the one-way coupling case is the largest comparing to the other cases, the
production term in this case results in the largest temperature variance shown in Fig. 1a and b. In
general the temperature and velocity fluctuation levels decrease as a result of the two-way
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coupling, so that the primary effect of the particles is to decrease the turbulent heat flux as shown
in Fig. 3. In Fig. 1c, for St > 7 some crossing of the curves is observed which is due to the os-
cillatory evolution of the spanwise component of the heat flux shown in Fig. 3e. The main source
of these oscillations is the correlation between the fluid pressure and its fluctuating temperature
gradient, p oh

oxi

D E
, as discussed below.

In order to gain further insight into the evolution of the turbulent heat flux of the continuous
phase, which is also one of the most important statistics from a modelling point of view, its
transport equation is considered. This equation can be obtained by multiplying the momentum
equation by h and the energy equation by ui, adding the two resulting equations, and then en-
semble averaging. The final equation reads
ohhuii
ot

¼ �huiujiMj � hhu2iSdi1 þ p
oh
oxi

� �
� eqi þ Hpi þMpi; ð23Þ
where
eqi ¼
1

Re
1

�
þ 1

Pr

�
oui
oxj

oh
oxj

� �
; ð24Þ

Hpi ¼ � a
dV

Xnp f2mp

sp
ðh�u�i

*
� hpu�i Þ

+
; ð25Þ

Mpi ¼ � 1

dV

Xnp f1mp

sp
ðh�u�i

*
� h�viÞ

+
: ð26Þ
The first two terms in (23) are the production terms, i.e. the Reynolds stresses along with the mean
temperature gradients and the heat fluxes along with the mean strain rate. The second production
term is zero for the heat flux components in the cross-stream and spanwise directions because
there is no mean velocity gradient in these directions. The third term is the pressure–temperature
fluctuation gradient correlation and the fourth term is due to the correlation between the gra-
dients of fluctuating temperature and velocity of the fluid phase. The last two terms represent the
contributions from the dispersed phase.

To further elaborate on the contributions of various terms in Eq. (23), the budgets of hh1u1i,
hh2u2i and hh3u3i are considered in Fig. 4 for the base case. The two production terms, hu1u2iM0

1St
and �hh1u2iS in Fig. 4a, both play a significant role on the temporal variation of hh1u1i while the
contribution from �hu1u1iM0

1 is much smaller. This is due to the time dependency of the cross-
stream component of the mean temperature gradient for this case. The modification of these
production terms is, directly or indirectly, a consequence of the modification of the Reynolds
stress which was discussed in our previous works (Mashayek, 1998; Mashayek and Taulbee,
2002). Our analysis of the results shows that most of the modifications of the continuous phase
heat flux by particles are due to the modification of the Reynolds stress. Since the base case and
the case with a ¼ 4ap both have the same Reynolds stress, the change of the specific heats ratio
does not affect huiujiMj as a production for the turbulent heat flux. As a result, the turbulent heat
flux components for these two cases are identical in Fig. 3.

Fig. 4a also shows the contribution of the pressure term 1
q p oh1

ox1

D E
and �eq1. Throughout the

simulation time, it is observed that the magnitude of the pressure term is much larger than that of



Fig. 4. Budgets of turbulent heat flux components for the base case with (a) initially streamwise (b) cross-stream and

(c) spanwise mean temperature gradients.
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�eq and this domination of pressure term is also shown in Rogers et al. (1989) for the single phase
flow. This figure indicates that the sudden change of dhh1u1i=dt is due to the appearance of a local
maximum point for the pressure term at St ’ 9. In general, the observed oscillation in the tem-
poral variation of the turbulent heat flux components in Fig. 3 is mostly due to the oscillations of
the pressure term. The effect of particles on these two terms is the reduction of their magnitude
and this reduction is more pronounced with the increase of the mass loading ratio. The increase of
the particle time constant also decreases the magnitude of these terms but they are not sensitive to
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the change of the specific heat ratio. The contribution of the particle terms Hp1 andMp1 in Eq. (23)
is much smaller than other terms as shown in Fig. 4 so that the modification of the heat flux is not
due to these terms. The reason for this behavior will be explained in the next section which is
devoted to the dispersed phase.
5. Temperature field of the discrete phase

The statistics of the particle temperature field are discussed in this section. In Fig. 5, the particle
temperature variance for the cases with a cross-stream mean temperature gradient is shown.
Similarly to the fluid phase, an initial decay is observed for all cases, due to the lack of an initial
correlation between the temperature and velocity fields which translates into a null turbulent heat
flux at t ¼ 0. The heat flux, through the mean velocity gradient, is partially responsible for the
production of the temperature variance. The initial decay rates of the base case, the one-way case,
and the /m ¼ 2/mb case are nearly the same for St < 2 whereas we observe a slightly smaller rate
for the sp ¼ 1:5spb case and a much smaller rate for the case with a ¼ 4ab. The initial decay rate
seems not to be sensitive to the change of the mass loading and observations in isotropic tur-
bulence confirms this (Jaberi and Mashayek, 2000). It is observed that the minimum point of the
temperature variance which can be considered as the end of the initial decay, is at St ’ 5 for the
a ¼ 4ab case and at St ’ 3 for other cases. During the later stages of temperature variance evo-
lution, the growth rate in the one-way case is the largest.

To assess the relative importance of various mechanisms involved in the evolution of the
particle temperature variance, the transport equation of this variance is considered.
Fig
dhhh2pii
dt

¼ 2

sp
ðhhf2h�hpii � hhf2h2piiÞ � 2hhhpviiiMi; ð27Þ
where hhhpviii is the discrete phase turbulent heat flux. Our DNS results indicate that correlations
of h�hp and h2p with f2 can be approximated as hhf2h�hpii � hhf2h2pii ffi hhf2iiðhhh�hpii � hhh2piiÞ,
which is implemented in our analysis.
. 5. Variance of particle temperature fluctuations for the cases with cross-stream mean temperature gradient.



Fig. 6. Budgets of variance of particle temperature with cross-stream mean temperature gradient for the base case (thin

lines) and the case with a ¼ 4ap (thick lines).
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With the above approximation, the contributions of different terms in Eq. (27) for the case with
a ¼ 4ab (thick lines) and the base case (thin lines) with a cross-stream mean temperature gradient
are shown in Fig. 6. It is observed that the difference between dhhh2p2ii=dt and RRHS curves is
negligible for both cases, therefore, the above approximation works well here. As shown in Fig. 6,
temporal evolution of the term �2hhhp2v2iiM0

2 is almost the same for both cases at all times,
however, temporal evolution of the first term on the right-hand side of Eq. (27) is different for
times St < 6:5 and is again the same for the later times. Therefore, the change of a affects the rate
of variation of the particle temperature variance in early times only. From a physical point of
view, we can say that the increase of the particle specific heat increases the thermal response time
of particles, thus the time of the particle response to the change of the surrounding fluid tem-
perature increases.

The evolution of the ratio ðhp2Þrms=ðh
�
2Þrms for different cases with the cross-stream temperature

gradient is shown in Fig. 7. It is noted that, with the exception of the one-way case, ðhp2Þrms=ðh
�
2Þrms

is always larger than unity. This figure also indicates that the mentioned ratio is the largest for the
Fig. 7. Ratio of the root mean squares of particle temperature and fluid temperature at the location of particles for the

cases with cross-stream mean temperature gradient.



Fig. 8. Correlation factor of particle temperature and fluid temperature at the location of particles for the cases with

cross-stream mean temperature gradient.

1348 B. Shotorban et al. / International Journal of Multiphase Flow 29 (2003) 1333–1353
case with a ¼ 4ab and the smallest for the one-way case. As shown, with an increase of the mass
loading, ðhp2Þrms=ðh

�
2Þrms increases for all of the simulation times. This suggests that the temper-

ature fluctuation intensity of the continuous phase decreases more than the fluctuation intensity of
the dispersed phase. It is also observed that with increasing the particle time constant, the ratio
decreases (after St ffi 2:5), whereas an opposite trend exists with the increase of the particle specific
heat.

In Fig. 8, the temporal evolution of hp2 and h�2 correlation factor, wðhp2; h�2Þ ¼
hhhp2h�2ii

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhh2p2iihhðh

�
2Þ

2ii
q.

, is presented. It appears that, after an initial rapid variation, this cor-

relation reaches nearly stationary values at long times. These stationary values increase with
increasing the mass loading ratio. Since the increase of a increases the heat capacity of all par-
ticles, the correlation factor is smaller for the a ¼ 4ab case in comparison to the base case. The
increase of the particle time constant also decreases the correlation factor for the same reason.

The turbulent heat flux components of the particles, hhhpnviii, are shown in Fig. 9. The tur-
bulent heat flux of particles along with the mean temperature gradient, Mi, are responsible for the
production of the particle temperature variance according to Eq. (27). As shown in Fig. 9, the
absolute value of the heat flux components decreases with increasing the mass loading ratio. This
is the primary reason for the decrease of the particle temperature variance, observed in Fig. 5,
with the increase of the mass loading ratio or the particle time constant. One of the interesting
features shown in Fig. 9 is that the absolute value of hhhp2v2ii is not very sensitive to the increase
of a whereas the absolute value of hhhp3v3ii increases with the increase of a.

In order to gain further insight into the evolution of the turbulent heat flux of particles, the
transport equation of this flux is considered
dhhhpviii
dt

¼ 1

sp
ðhhf2h�viii � hhf2hpviiiÞ þ

1

sp
ðhhf1hpu�i ii � hhf1hpviiiÞ � hhvivjiiMj � hhhpv2iiSdi1:

ð28Þ
Similarly to Eq. (27), here the approximations hhf2h�viii � hhf2hpviii ffi hhf2iiðhhh�viii � hhhpviiiÞ
and hhf1hpu�i ii � hhf1hpviii ffi hhf1iiðhhhpu�i ii � hhhpviiiÞ have been invoked. The budget of



Fig. 9. Turbulent heat flux components of particles with (a) initially streamwise, (b) cross-stream and (c) spanwise

mean temperature gradients.
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hhhp2v2ii, i.e. the contributions of all non-zero terms in the right-hand side of Eq. (28), for the base
case with a cross-stream mean temperature gradient is shown in Fig. 10. It is observed that the
contributions from all the right-hand side terms are significant, however, the contribution of
�hhv2v2iiM0

2 (the third simplified term on the right-hand side of Eq. (28)) dominates in the early
Fig. 10. Budgets of turbulent heat flux components of particles for the base case with cross-stream mean temperature

gradient.



Fig. 11. Temporal variation of (a) hhf2iiðhhh�viii � hhhpviiiÞ=sp and (b) hhf1iiðhhhpu�i ii � hhhpviiiÞ=sp for the base case

with cross-stream mean temperature gradient.
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times. As shown in our previous studies (Mashayek, 1998; Mashayek and Taulbee, 2002), the
increase of the mass loading or the particle time constant results in a decrease of the magnitude of
hhv2v2ii so that the effect of the change of the mass loading or the particle time constant on the
turbulent heat flux of particles is carried out via the Reynolds stress of the particles. The effects of
the flow parameters on the other terms on the right-hand side of Eq. (28) are discussed next.

The temporal variation of the first two terms on the right-hand side of Eq. (28) is shown in
Fig. 11. As shown, the effect of the increase of the mass loading or the particle time constant is to
decrease the magnitude of these terms. The increase of the particle mass loading decreases these
two terms by two mechanisms. First it directly decreases the particle Reynolds number so that
hhf1ii and hhf2ii decrease. Second, ðhhh�2v2ii � hhhp2v2iiÞ and ðhhhp2u�2ii � hhhp2v2iiÞ decrease with
increasing the mass loading ratio. As shown in previous studies, the particle Reynolds number
increases with increasing the particle time constant, therefore, hhf1ii and hhf2ii increase with
the increase of sp. Our observation shows that ðhhh�2v2ii � hhhp2v2iiÞ and ðhhhp2u�2ii � hhhp2v2iiÞ also
increase with increasing the particle time constant. Nevertheless, the overall effect of the increase
of the particle time constant is to decrease the first two terms on the right-hand side of Eq. (28)
due to the increase of their denominators. The comparison of the case with a ¼ 4ab and the base
case in Fig. 11, shows that the first term decreases and the second term increases on the right-hand
side of Eq. (28) with an increase of the particle specific heat. Since all of the hydrodynamical
properties of these cases are the same, the particle Reynolds numbers of the base case and the case
with a ¼ 4ab are the same at any time. Therefore, hhf1ii does not change and hhf2ii is multiplied by
1=a factor. In spite of the increase of ðhhh�2v2ii � hhhp2v2iiÞ with the increase of the specific heat
capacity ratio, the first term of the right-hand side decreases due to the decrease of hhf2ii. The
second term on the right-hand side of Eq. (28) increases since ðhhhp2u�2ii � hhhp2v2iiÞ increases with
the increase of a.

In homogeneous shear flows with mean temperature gradients, one of the important parame-
ters is the inclination angle of the turbulent heat flux. It has been shown in single-phase flows that,
for cases with a mean temperature gradient, this angle aligns itself with the principal axis of the
Reynolds stress tensor (Rogers et al., 1989). The inclination angle is defined as bf ¼ tan�1ðhhu2i=
hhu1iÞ for the fluid phase, and bp ¼ tan�1hhhpv2ii=hhhpv1ii for the particle phase. Fig. 12 shows the



Fig. 12. Inclination angle of the turbulent heat flux of (a) the fluid phase and (b) the particle phase for the cases with

cross-stream mean temperature gradient.
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time evolution of bf and bp for cases with the cross-stream mean temperature gradient. The
sudden initial increase of the magnitudes of these angles from St ¼ 0 to St ffi 0:5 is due to the fact
that the cross-stream component of the heat flux grows much faster than its stream-wise com-
ponent. After St ffi 0:5, the magnitudes of these angles start decreasing until stationary levels are
reached at long times. It is observed that the increase of the mass loading ratio or the particle time
constant decreases the magnitude of the inclination angle for both phases. The increase of the
ratio of specific heats does not change bf since it does not affect the turbulent heat flux of the fluid
as shown in Fig. 3.
6. Summary and concluding remarks

Direct numerical simulation is implemented to investigate the particle and fluid temperatures
behavior in particle-laden homogeneous shear turbulent flows in the presence of a mean tem-
perature gradient. Both one- and two-way couplings between the particles and the fluid are
considered. The mass loading ratio, the particle time constant, the ratio of specific heats, and the
orientation of the mean temperature gradient are the parameters whose influence on the particle
and fluid temperature statistics are studied. The temperature variance and the turbulent heat flux,
which are the primary temperature statistics in turbulent flows, are discussed in detail for both
phases. Other statistics contributing to the evolution of the temperature variance and heat flux are
also discussed.

The results indicate that the temperature variance and the turbulent heat flux of the fluid are
decreased by the presence of the particles. The increase of either the mass loading ratio or the
particle time constant generally decreases the fluid temperature variance due mostly to the de-
crease of the turbulent heat flux, whereas an increase of the ratio of specific heats decreases the
fluid temperature variance mainly through the increase of the temperature variance dissipation
terms. The ratio of specific heats is the only parameter whose influence on the fluid heat flux
modification is insignificant. The increase of the mass loading ratio decreases the magnitude of the
fluid turbulent heat flux. This decrease is due mainly to the modifications of the flow Reynolds
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stresses. Further analysis of the cases with two-way coupling shows that the modification of the
fluid temperature statistics by particles are mostly effected via the momentum coupling rather than
the thermal coupling.

Various temperature statistics of the particles are also affected by the change of the above-
mentioned parameters. The effect of the increase of the ratio of specific heats is to increase the
temperature variance of the particles whereas that of the mass loading ratio or the particle time
constant is to decrease the temperature variance of the particles. The results of our analysis also
indicate that the correlation of the particle temperature and the fluid temperature at the location
of the particles decreases with the increase of either the ratio of specific heats or the particle time
constant. This correlation increases with the increase of the mass loading ratio. The magnitude of
the particle turbulent heat flux decreases with the increase of the mass loading ratio. The heat flux
magnitude increases with the increase of the ratio of the specific heats except for the cases with the
cross-stream mean temperature gradient.
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